Piecewise rational approximation of square-root parameterizable curves using the Weierstrass form

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rational Nodal Curves with No Smooth Weierstrass Points

LetX denote the rational curve with n+1 nodes obtained from the Riemann sphere by identifying 0 with∞ and ζj with −ζj for j = 0, 1, . . . , n−1, where ζ is a primitive (2n)th root of unity. We show that if n is even, then X has no smooth Weierstrass points, while if n is odd, then X has 2n smooth Weierstrass points. C. Widland [14] showed that the rational curve with three nodes obtained from P...

متن کامل

Torsion Subgroups of Elliptic Curves in Short Weierstrass Form

In a recent paper by M. Wieczorek, a claim is made regarding the possible rational torsion subgroups of elliptic curves E/Q in short Weierstrass form, subject to certain inequalities for their coefficients. We provide a series of counterexamples to this claim and explore a number of related results. In particular, we show that, for any ε > 0, all but finitely many curves EA,B : y 2 = x +Ax+B, w...

متن کامل

Precise Voronoi Cell Extraction of Free-Form Planar Piecewise C1-Continuous Closed Rational Curves

We present an algorithm for generating Voronoi cells for a set of planar piecewise C1-continuous closed rational curves, which is precise up to machine precision. The algorithm starts with the symbolically generated bisectors for pairs of C1-continuous curve segments (C(t),Ci(r)). The bisectors are represented implicitly in the tr-parameter space. Then, they are properly trimmed after being spl...

متن کامل

Approximation of the n-th Root of a Fuzzy Number by Polynomial Form Fuzzy Numbers

In this paper we introduce the root of a fuzzy number, and we present aniterative method to nd it, numerically. We present an algorithm to generatea sequence that can be converged to n-th root of a fuzzy number.

متن کامل

Linear equivalence between elliptic curves in Weierstrass and Hesse form

Elliptic curves in Hesse form admit more suitable arithmetic than ones in Weierstrass form. But elliptic curve cryptosystems usually use Weierstrass form. It is known that both those forms are birationally equivalent. Birational equivalence is relatively hard to compute. We prove that elliptic curves in Hesse form and in Weierstrass form are linearly equivalent over initial field or its small e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Aided Geometric Design

سال: 2017

ISSN: 0167-8396

DOI: 10.1016/j.cagd.2017.08.001